Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33293940

RESUMO

BACKGROUND: Snake venom phospholipases A2 (svPLA2) are biologically active toxins, capable of triggering and modulating a wide range of biological functions. Among the svPLA2s, crotoxin (CTX) has been in the spotlight of bioprospecting research due to its role in modulating immune response and hemostasis. In the present study, novel anticoagulant mechanisms of CTX, and the modulation of inflammation-induced coagulation were investigated. METHODS: CTX anticoagulant activity was evaluated using platelet poor plasma (PPP) and whole blood (WB), and also using isolated coagulation factors and complexes. The toxin modulation of procoagulant and pro-inflammatory effects was evaluated using the expression of tissue factor (TF) and cytokines in lipopolysaccharide (LPS)-treated peripheral blood mononuclear cells (PBMC) and in WB. RESULTS: The results showed that CTX impaired clot formation in both PPP and WB, and was responsible for the inhibition of both intrinsic (TF/factor VIIa) and extrinsic (factor IXa/factor VIIIa) tenase complexes, but not for factor Xa and thrombin alone. In addition, the PLA2 mitigated the prothrombinase complex by modulating the coagulation phospholipid role in the complex. In regards to the inflammation-coagulation cross talk, the toxin was capable of reducing the production of the pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α, and was followed by decreased levels of TF and procoagulant activity from LPS-treated PBMC either isolated or in WB. CONCLUSION: The results obtained in the present study recognize the toxin as a novel medicinal candidate to be applied in inflammatory diseases with coagulation disorders.

2.
Front Immunol ; 11: 599736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584667

RESUMO

In the last few months, the coronavirus disease 2019 (COVID-19) pandemic has affected millions of people worldwide and has provoked an exceptional effort from the scientific community to understand the disease. Clinical evidence suggests that severe COVID-19 is associated with both dysregulation of damage tolerance caused by pulmonary immunopathology and high viral load. In this review article, we describe and discuss clinical studies that show advances in the understanding of mild and severe illness and we highlight major points that are critical for improving the comprehension of different clinical outcomes. The understanding of pulmonary immunopathology will contribute to the identification of biomarkers in an attempt to classify mild, moderate, severe and critical COVID-19 illness. The interface of pulmonary immunopathology and the identification of biomarkers are critical for the development of new therapeutic strategies aimed to reduce the systemic and pulmonary hyperinflammation in severe COVID-19.


Assuntos
Biomarcadores/análise , COVID-19/imunologia , COVID-19/patologia , Pulmão/imunologia , Pulmão/patologia , Humanos , Pulmão/virologia , SARS-CoV-2
3.
J. venom. anim. toxins incl. trop. dis ; 26: e20200076, 2020. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1143214

RESUMO

Snake venom phospholipases A2 (svPLA2) are biologically active toxins, capable of triggering and modulating a wide range of biological functions. Among the svPLA2s, crotoxin (CTX) has been in the spotlight of bioprospecting research due to its role in modulating immune response and hemostasis. In the present study, novel anticoagulant mechanisms of CTX, and the modulation of inflammation-induced coagulation were investigated. Methods: CTX anticoagulant activity was evaluated using platelet poor plasma (PPP) and whole blood (WB), and also using isolated coagulation factors and complexes. The toxin modulation of procoagulant and pro-inflammatory effects was evaluated using the expression of tissue factor (TF) and cytokines in lipopolysaccharide (LPS)-treated peripheral blood mononuclear cells (PBMC) and in WB. Results: The results showed that CTX impaired clot formation in both PPP and WB, and was responsible for the inhibition of both intrinsic (TF/factor VIIa) and extrinsic (factor IXa/factor VIIIa) tenase complexes, but not for factor Xa and thrombin alone. In addition, the PLA2 mitigated the prothrombinase complex by modulating the coagulation phospholipid role in the complex. In regards to the inflammation-coagulation cross talk, the toxin was capable of reducing the production of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, and was followed by decreased levels of TF and procoagulant activity from LPS-treated PBMC either isolated or in WB. Conclusion: The results obtained in the present study recognize the toxin as a novel medicinal candidate to be applied in inflammatory diseases with coagulation disorders.(AU)


Assuntos
Fosfolipídeos , Venenos de Serpentes , Crotoxina , Fosfolipases A2 , Anticoagulantes , Produtos Biológicos , Lipopolissacarídeos
4.
Stem Cells Int ; 2017: 7492914, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28814957

RESUMO

Sickle cell anemia (SCA) is a monogenic disease of high mortality, affecting millions of people worldwide. There is no broad, effective, and safe definitive treatment for SCA, so the palliative treatments are the most used. The establishment of an in vitro model allows better understanding of how the disease occurs, besides allowing the development of more effective tests and treatments. In this context, iPSC technology is a powerful tool for basic research and disease modeling, and a promise for finding and screening more effective and safe drugs, besides the possibility of use in regenerative medicine. This work obtained a model for study and treatment of SCA using iPSC. Then, episomal vectors were used for reprogramming peripheral blood mononuclear cells to obtain integration-free iPSC. Cells were collected from patients treated with hydroxyurea and without treatment. The iPSCP Bscd lines were characterized for pluripotent and differentiation potential. The iPSC lines were differentiated into HSC, so that we obtained a dynamic and efficient protocol of CD34+CD45+ cells production. We offer a valuable tool for a better understanding of how SCA occurs, in addition to making possible the development of more effective drugs and treatments and providing better understanding of widely used treatments, such as hydroxyurea.

5.
Rev. bras. hematol. hemoter ; 36(3): 213-218, May-Jun/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-713680

RESUMO

OBJECTIVE: Nowadays recombinant factor VIII is produced in murine cells including in Chinese hamster ovary (CHO) and baby hamster kidney cells (BHK). Previous studies, using the murine leukemia virus-derived retroviral vector pMFG-FVIII-P140K, modified two recombinant human cell lines, HepG2 and Hek293 to produce recombinant factor VIII. In order to characterize these cells, the present study aimed to analyze the integration pattern of retroviral vector pMFG-FVIII-P140K. METHODS: This study used ligation-mediated polymerase chain reaction to locate the site of viral vector integration by sequencing polymerase chain reaction products. The sequences were compared to genomic databases to characterize respective clones. RESULTS: The retroviral vector presented different and non-random profiles of integration between cells lines. A preference of integration for chromosomes 19, 17 and 11 was observed for HepG2FVIIIdB/P140K and chromosome 9 for Hek293FVIIIdB/P140K. In genomic regions such as CpG islands and transcription factor binding sites, there was no difference in the integration profiles for both cell lines. Integration in intronic regions of encoding protein genes (RefSeq genes) was also observed in both cell lines. Twenty percent of integrations occurred at fragile sites in the genome of the HepG2 cell line and 17% in Hek293. CONCLUSION: The results suggest that the cell type can affect the profile of chromosomal integration of the retroviral vector used; these differences may interfere in the level of expression of recombinant proteins. .


Assuntos
Fator VIII , Integração Viral , Vírus da Leucemia Murina , Hemofilia A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...